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ABSTRACT
In domains ranging from computer vision to natural language pro-

cessing, machine learning models have been shown to exhibit stark

disparities, often performing worse for members of traditionally

underserved groups. One factor contributing to these performance

gaps is a lack of representation in the data the models are trained

on. It is often unclear, however, how to operationalize representa-

tiveness in specific applications. Here we formalize the problem of

creating equitable training datasets, and propose a statistical frame-

work for addressing this problem. We consider a setting where a

model builder must decide how to allocate a fixed data collection

budget to gather training data from different subgroups. We then

frame dataset creation as a constrained optimization problem, in

which one maximizes a function of group-specific performance met-

rics based on (estimated) group-specific learning rates and costs per

sample. This flexible approach incorporates preferences of model-

builders and other stakeholders, as well as the statistical properties

of the learning task. When data collection decisions are made se-

quentially, we show that under certain conditions this optimization

problem can be efficiently solved even without prior knowledge of

the learning rates. To illustrate our approach, we conduct a simula-

tion study of polygenic risk scores on synthetic genomic data—an

application domain that often suffers from non-representative data

collection. When optimizing policies for overall or group-specific

average health, we find that our adaptive approach outperforms

heuristic strategies, including equal and representative sampling.

In this sense, equal treatment with respect to sampling decisions

does not guarantee equal or equitable outcomes.
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1 INTRODUCTION
Consider the problem of building a computer vision model to de-

tect deforestation from satellite imagery [31, 35, 44]. Such models

may be useful to assess ecological damage, and to guide the in-

vestment of resources by government agencies, legal organizations,

and environmental groups. Machine learning models like this—

as well as related models in natural language processing, health-

care, criminal justice, and beyond—have been shown to exhibit

sharp disparities, often performing worse on subgroups of the pop-

ulation defined by race, ethnicity, gender, language, and nation-

ality [10, 12, 16, 19, 21, 23, 30, 41, 42, 54, 59]. Our deforestation

model might, for instance, perform worse in certain regions of

the world, perhaps given differences in the visual appearance of

the tree canopy. A variety of techniques in the fair machine learn-

ing community attempt to mitigate such shortcomings [9, 15, 20–

22, 25, 27, 36, 37, 41, 43, 50, 58, 62–64]. For example, one might

constrain the computer vision model to have equal error rates

across countries [31, 35, 44]. Popular approaches to algorithmic

fairness—such as demanding error rate parity—often implicitly as-

sume a fixed training dataset, with disparities addressed by altering

the statistical model. In many cases, however, it is also possible to

update the training datasets themselves (e.g., one might seek out

or label additional satellite images from certain countries), and so

it is important to design approaches to algorithmic fairness that

consider this possibility.

There have been numerous calls tomake datasets more diverse [2,

3, 29, 51, 57], including by policymakers, but, in practice, it is of-

ten unclear how exactly one should compile datasets in specific

domains to ensure the models that are trained on them are broadly

equitable. For instance, following the heuristic of “equal sampling,”

https://doi.org/10.1145/3531146.3533203
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one might label an equal number of images per country; alterna-

tively, following the heuristic of “representative sampling,” one

might label images in proportion to the geographic area of each

country. While both strategies aim for diversity in the dataset, they

can lead to quite different outcomes and downstream models. Fur-

thermore, neither of these sampling strategies directly considers

either the costs of data collection or the impact of datapoints on

model performance. For example, if the costs of data collection

vary across countries, then, given a fixed budget, different sampling

strategies can lead to different total dataset sizes, impacting over-

all model performance. There may similarly be variance in how

much datapoints from one country impact model performance in

other regions (e.g., due to similarity in vegetation). Relatedly, it may

be important to prioritize performance in certain regions (e.g., to

maximize impact given local intended uses and expected impacts

of the model, regulatory constraints, or because those areas have

been historically neglected), creating additional considerations for

dataset construction.

Here we develop a framework for constructing broadly equitable

datasets and for evaluating the equity of existing datasets. We start,

in Section 3, by formalizing the dataset construction problem in

a way that accounts for both the costs and consequences of data

collection strategies. Our approach separates the task into two

key components. First, we introduce the notion of group-specific

“learning curves” that describe how the allocation of training data

affects the resulting group-level model performance. For instance,

in our computer vision application, the model performance might

be high in one country evenwith relatively small amounts of labeled

data in that country, whereas in another country more samples

from that country might be required to achieve a comparably high

model performance. Second, we incorporate the model-builder’s

preferences over the resulting group-level model performances

into a utility function. For example, a model-builder might specify

how to prioritize performance across regions. Given these two

ingredients, dataset construction can then be framed as maximizing

utility subject to the budgetary constraints.

When the learning curves are fully known and concave, and the

utility is linear, this formalization results in a convex optimization

problem which can be efficiently solved via standard approaches.

But in most cases, the model-builder does not have a priori knowl-

edge of the learning curves, creating additional challenges for ef-

ficiently constructing datasets that are appropriate to the task. In

Section 4, we consider a setting in which datasets are constructed

sequentially—a setting that is common when datapoints are labeled

online, with a remote workforce. In this case, we present an adaptive

sampling algorithm that can, under certain conditions, efficiently

find a utility-maximizing allocation even in the absence of knowl-

edge of the learning curves. Both analytically and empirically, we

show that our adaptive algorithm gives near-optimal performance

in a variety of scenarios, outperforming common alternatives.

Finally, in Section 5 we evaluate our approach using a popular

dataset simulator used to train polygenic risk score (PRS) models,

which seek to identify high-risk individuals for targeted health in-

terventions via genomic data. We construct a hypothetical disease

and health intervention, and evaluate how changing the allocation

of training data between more or fewer people of European and

African descent affects the quality of risk stratification for the in-

tervention in both populations. We find that our adaptive approach

to sampling allows for model-builders to construct models which

maximize the total impact of the recommended health intervention

while allowing them the flexibility to efficiently increase impact in

groups traditionally excluded by PRSs.

2 RELATEDWORK
Given a fixed dataset, the problem of training fair models has re-

ceived considerable attention from the machine learning commu-

nity [9, 15, 20–22, 25, 27, 36, 37, 41, 43, 50, 58, 62–64], where many

of the popular approaches fall into one of two broad categories:

equalizing error rates between groups or minimizing the impact of

sensitive attributes on downstream predictions. There is a substan-

tially smaller literature on the equitable construction of datasets,

in which a model-builder can choose how to allocate a fixed bud-

get to acquire training samples from different groups to mitigate

inequities. Below we briefly describe some of the most related re-

search in this line of work.

Branchaud-Charron et al. [11] consider how BALD—a heuristic

algorithm for active learning which searches for the most infor-

mative datapoint overall to sample next without knowledge of

group membership—improved accuracy of minority group model

performance and predictive parity compared to uniform sampling.

However, this heuristic does not take into account tradeoffs in

group-level model performances when sampling, so it is ill-suited

to solve our allocation problem; we note, though, that adding an

active learning subroutine to our sampling approach could be a

promising direction for future work.

Anahideh et al. [4] and Sharaf and Daumé III [60] both propose

group-aware active learning techniques to the problem of allocating

a fixed budget to sample a dataset from different groups. In both

methodologies, the model-builder identifies a fairness metric and

uses an active learning framework to select samples which both

improve the overall model performance along with the fairness

metric. Our approach differs from these fundamentally in that we

specify the model-builder’s utility directly in terms of group-level

model performances, centering the consequences of performance

disparities [18, 52]. We show that our specification has numerous

upsides, making it straightforward to: (1) implement interventions

to make models more inclusive to traditionally underserved groups,

beyond satisfying a fairness metric; (2) adaptively sample under a

wider range of learning curves; and (3) audit a dataset for inclusivity.

Abernethy et al. [1] propose a max-min fairness theory for ac-

tive sampling by sampling from the group that currently has the

worst model performance at each step. We evaluate this strategy in

our work and characterize how it compares to other strategies for

constructing equitable datasets; in particular, we show that it can

lead to sub-optimal results, as it does not consider the rate at which
datapoints improve performance. Finally, Bechavod et al. [7] and

Kilbertus et al. [40] consider the question of making predictions

under partial and historically biased feedback.

In addition to the algorithmic approaches described above, there

have beenmany real-world efforts to compilemore inclusive datasets

in several different domains [28, 32, 46, 55]. These efforts often

employ a variety of natural heuristics—for example, ensuring a

minimum level of representation across groups. Such heuristics are
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often useful when downstream applications are varied or less well

specified, but, as we show, they can be sub-optimal for specific, well-

defined modeling tasks. Finally, given an existing dataset, many

proposals have suggested ways to characterize their equity and

aid appropriate use, for example by including statements describ-

ing what populations the datasets are and are not representative

of [8, 29, 33, 34].

3 PROBLEM SETUP
3.1 A model of sampling
We consider a scenario where a model builder has a fixed budget B
which they can use to obtain training data associated with K differ-

ent groups.
1
Let ck denote the cost for obtaining a single sample

from group k . Returning to our running example, a researcher train-

ing a computer vision model to detect deforestation must decide

how to allocate their budget to obtain labeled satellite images from

K different countries, with country-specific costs of data collection

ck .
To formalize the model-builder’s allocation problem, we next in-

troduce the idea of group-specific “learning curves”, which capture

the expected performance gains under different sampling strate-

gies. Let ®n = (n1, ...,nK ) describe the number of samples collected

from each group under a given strategy, where nk ∈ R+. Note that
we allow fractional sample sizes—not just integer sizes—which we

interpret as a probabilistic strategy. Specifically, if nk = u +v for an

integer u and 0 < v < 1, then after collecting the first u datapoints,

an additional datapoint is collected with probabilityv . To satisfy the

budget constraint (in expectation), we require that

∑K
k=1 cknk ≤ B.

Now let

T®n =
{
(X 1,Y 1), (X 2,Y 2), ...(XN ,YN )

}
(1)

denote a random training dataset with features X and labels Y
satisfying the given allocation ®n. In particular, if X i

д denotes the

group membership of the i-th datapoint, then, for 1 ≤ k ≤ K ,
E[|{i : X i

д = k}|] = nk .

We further assume that within each group, the samples (X ,Y ) are
i.i.d draws from a fixed, group-specific data-generating distribution.

Suppose that the model-builder fixes a method for training a

model (e.g. logistic regression), and say
ˆfT ®n is that model fit to the

training data T®n , with
ˆfT ®n (X

0) denoting the model prediction on a

datapoint X 0
. Then, the group-level model performance given the

training dataset T®n is

PERFk,T ®n = EX 0,Y 0 [G(Y 0, ˆfT ®n (X
0)) | X 0

д = k], (2)

where G is defined by the model-builder to be a measure of model

performance given prediction
ˆfT ®n (X

0) and true outcome Y 0
. The

group-level performance is thus the expected model performance,

as defined by G, of the model for a new point (X 0,Y 0) drawn from

the joint distribution of the data conditioned on membership in

group k .

For example, in our setting we might define G = aY 0 ˆfT ®n (X
0) −

b(1−Y 0) ˆfT ®n (X
0) for some positive constants a and b which balance

the benefit of detecting a true instance of deforestation versus the

cost of a false positive, respectively.

1
The “budget” can include both monetary and other costs, such as time or effort.

Finally, the expected group-level model performance given a

training allocation ®n is

Mk (®n) = ET ®nEX 0,Y 0 [G(Y 0, ˆfT ®n (X
0)) | X 0

д = k], (3)

where the outer expectation is taken over random datasets satis-

fying the specified group-level sample sizes. We call this function

Mk the group-level learning curve, the function which maps a

training allocation to the expected model performance, and let

®M(®n) = (M1(®n), ...,MK (®n)) denote the vector of group-level perfor-
mances for each group.

For a given learning curve, we now define a model-builder’s

utility over different allocations. This utility can be written as

U ( ®M) = U (M1(®n), ...,MK (®n)), whereU ( ®M) can be thought of as the

model-builder’s preference over model performances for different

groups. In some settings, the model-builder may wish to prioritize

model performance in one particular group: for instance, in our

deforestation example, a researcher may wish to prioritize perfor-

mance in a country with a stronger regulatory environment which

can better translate model performance to impact, or a country

which has been traditionally understudied by other deforestation

analyses. To capture such preferences, we primarily consider utility

functions that are a linear combination of the model performances

of each group, of the form

U ( ®M) =
K∑
k=1

akMk , (4)

where ak ≥ 0. In particular, this specification allows the model

builder the flexibility to intervene to make models more inclusive,

by setting ak higher for groups which, for example, have been

traditionally excluded. We note that these groups need not have

lower model performance in order to be prioritized, distinguishing

our approach from those aiming for performance parity.

Finally, given the above ingredients, the model-builder’s opti-

mization problem is to choose an allocation ®n∗ which maximizes

utility subject to the budget constraint:

®n∗ ∈ argmax

®n
U (M1(®n), ...,MK (®n))

subject to:

K∑
k=1

cknk ≤ B.
(5)

If the learning curvesMk are known and concave, and the utility

function is linear—as in Eq. (4)—then U ( ®M(®n)) is itself a concave
function of ®n. More generally, ifU is concave and non-decreasing in

every element of ®M , then, since a concave non-decreasing function

of concave functions is itself concave,U ( ®M(®n)) is concave. In these

cases, an optimal allocation ®n∗ can be efficiently computed using

off-the-shelf tools for convex optimization. In Section 4, we develop

an alternative approach to finding optimal allocations that does not

require full knowledge of the learning curves.

In addition to formalizing the problem of dataset construction,

this framework provides an approach for auditing existing datasets.

Specifically, for an auditor who might have their own preference

Ũ (M1(®n), ...,Mk (®n)), they can estimate the gap

max

®n
Ũ (®n) − Ũ

(
®n∗
model-builder

)
, (6)
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where the maximum is taken over feasible allocations. A large gap

suggests that the model-builder’s implied preferences over group-

level model performances, based on their allocation, differs from

that of the auditor’s.

3.2 Alternative specifications of the utility
function

In the linear specification of utility introduced above, the model

builder’s preferences for a single group do not depend on how well

the model performs for other groups. Alternative specifications

might allow for a direct penalty to inequality: for example, we

could specify

U ( ®M) =
K∑
k=1

akMk − b |Mk −M |, (7)

whereM denotes the average performance across all groups, and the

penalization term |Mk −M | signals that the model builder prefers

a solution where the model performances across groups are similar.

For example, if an allocation results in the same model performance

for all groups, such that Mk = M for all k , then the penalization

term is 0.

In some cases, explicitly encoding preferences for parity can be

appropriate to the application. In other instances, though, doing so

can lead to unintended consequences. For example, consider two

possible allocations ®n1 and ®n2 over three groups such that ®M(®n1) =

(1, 1, 1) and ®M(®n2) = (2, 3, 4). The latter allocation has strictly better
performance for each group. However, ifb is sufficiently large in the

utility in Eq. (7), thenU ( ®M(®n1)) > U ( ®M(®n2)), since the penalization
term is zero in the first allocation and positive in the second. In

other words, in this example, a preference for parity in performance

can lead to worse performance for all groups.

Despite some of the challenges with encoding parity as above,

one might still seek to prioritize groups with lower performance to

reduce inequitable model performance across groups. One option

for doing so is to apply a concave transformation to the model

performance terms. For example, if U ( ®M) =
∑K
k=1 log(Mk ), the

marginal increase in utility is greatest for groups with the lowest

model performances, encouraging parity. Yet, nonetheless, a Pareto

improvement—in which all groups achieve higher performance—

still results in higher utility.

Non-linear specifications of the utility, such as the two above,

which directly penalize inequality may be particularly useful if

parity in model performance has large positive externalities to

society. However, for simplicity, throughout the remainder of this

work we focus on the case of linear utility, U (M) =
∑K
k=1 akMk ,

which may be suitable in many common applications.

3.3 An Illustrative example
We demonstrate our framework via an illustrative example involv-

ing our running computer vision hypothetical. Imagine the re-

searcher has a data collection budget of B = 1000, and the cost to

label an image in each of K = 4 countries is given by the vector

®c = (1, 1, 2, 1). Further suppose the group-level learning curves are

Sampling Strategy M1 M2 M3 M4 U
equal

Upriority

Equal 19.5 16.7 19.5 19.5 18.8 18.9

Representative 19.7 16.7 19.7 17.6 18.4 18.3

Performance Parity 18.8 18.8 18.8 18.8 18.8 18.8

Optimal (U
equal

) 25.5 17.3 17.3 25.5 21.4 -

Optimal (Upriority) 20.0 17.3 17.3 30.0 - 22.1

Table 1: Resultingmodel performances ®M of different strate-
gies for constructing equitable datasets, along with the aver-
agemodel performance,Uequal, across all four countries.We
find that our static methods, equal and representative sam-
pling, result in both lower than possible average model per-
formance in addition to different country-level outcomes.
Sampling adaptively from the group with the lowest perfor-
mance results in equal model performance between coun-
tries, but still results in lower than possible total model
performance. We also consider an alternative utility func-
tion for a policy-maker who wishes to prioritize country
4—for example, because it has a more effective regulatory
environment around deforestation, or it has been tradition-
ally understudied— where Upriority is a weighted average of
the country-level model performances with weights ®a =
(1, 1, 1, 1.5). We find that our framework allows us the flex-
ibility to prioritize model performance in country 4.

given by:

Mk (®n) =
©­«
K∑
j=1

γk, j · ®nj
ª®¬
1

2

, γ =


1 0.3 0.3 0.3

0.3 0.5 0.3 0.3

0.3 0.3 1 0.3

0.3 0.3 0.3 1

 . (8)

Because the square root function is increasing and concave, our

specification matches the intuition that more data will increase

model performance, albeit at a slowing rate as the size of the training

dataset grows. Furthermore, the weights γ specify that data from

any one country helps performance in all the other countries, but

at a lesser rate than data from the same country (i.e., for each row

of γ , the diagonal entry is the largest). For example,

M1 = (n1 + 0.3 · n2 + 0.3 · n3 + 0.3 · n4)
1

2 ,

meaning that the model performance for country 1 scales with the

square root of the effective number of training examples, where

training examples from other countries are discounted to 30% that

of samples from country 1.

We now consider a variety of strategies for constructing equi-

table datasets. For example, a model-builder might decide to label an

equal number of training samples from each group, resulting in the

allocation ®n = (200, 200, 200, 200). Alternatively, a model-builder

might decide to create a representative dataset, withnk ∼ pk , where
®p = (2 million km

2, 2 million km
2, 2 million km

2, 1 million km
2) de-

notes the geographical areas of the four hypothetical countries we

consider. Finally, a model-builder might select the allocation so

as to ensure parity in performance across the four countries—an

outcome that one can achieve by sequentially selecting datapoints

from the country with the lowest model performance until the
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budget is exhausted [1, 4, 60]. The country-level model perfor-

mances, Mk , resulting from these three sampling strategies are

shown in the first three rows of Table 1. The second-to-last col-

umn in the table shows the average performance across countries

U
equal
( ®M) = 1

K
∑
k Mk , and, for this utility, the penultimate row

in the table shows the performance under the utility-maximizing

allocation ®n∗ = (500, 0, 0, 500).
The results in Table 1 highlight two key points. First, whereas all

three common heuristic sampling strategies perform comparably,

the optimized allocation achieves substantially greater utility. This

gain stems in part from the fact that the static strategies did not

account for the differential sampling costs. The optimized strategy,

recognizing that the marginal improvement per dollar in country

3 was lower than in other regions, targeted its budget to the re-

maining countries. Indeed, in the optimal allocation, no samples

were collected from two of the four countries. By avoiding sam-

pling from relatively expensive countries, the optimal strategy was

able to acquire more total datapoints—for example, while the equal

sampling strategy acquired 800 datapoints, the optimal strategy

acquired 1,000. Second, even though the optimal allocation did

not collect any samples from countries 2 or 3, it still was able to

achieve reasonable performance in those regions, given the inter-

country learning effects. In fact, in country 2, the optimal strategy

achieved higher performance than both the equal sampling and

representative sampling approaches. Thus, although all three of

the heuristic sampling approaches seem a priori reasonable, they

result in quite different overall and country-level performances,

demonstrating the value of formalizing one’s goals for a dataset,

and then optimizing for those objectives.

Finally, we consider an alternative hypothetical scenario where

the model-builder wants to intervene to make the model more in-

clusive for country 4, perhaps due to a stronger regulatory environ-

ment making deforestation interventions more effective there, or be-

cause past research has not included country 4. To encode these pref-

erences, the model-builder sets Upriority( ®M) =
1∑K

k=1 ak

∑K
k=1 akMk ,

where ®a = (1, 1, 1, 1.5). The optimal strategy under this setting

is to choose ®n∗ = (143, 0, 0, 857), moving some of the samples in

our original optimal solution from group 1 to group 4 to increase

the model performance for group 4. (See the last row of Table 1

for country-level performance.) Whereas traditional approaches to

dataset construction do not actively consider such preferences, our

framework allows for the flexibility to pose and optimize for these

trade-offs.

4 FINDING OPTIMAL ALLOCATIONS
When the learning curvesMk are known—and the learning curves

are concave and utility is linear—standard techniques from convex

optimization allow one to efficiently compute optimal allocations.

However, in practice, the learning curves are not usually known

a priori, before data are collected. In this scenario, it is useful to

draw a distinction between situations where sampling is done in

one shot, with the allocation determined prior to any data collec-

tion, and where sampling can be done sequentially, in which the

model-builder can collect samples one at a time and use information

gleaned from the current sample to decide which group to sample

from next. Many real-world scenarios may in fact lie somewhere

Algorithm 1 Greedy algorithm to construct an equitable dataset.

ALLOC← START ▷ ALLOC is an array with element k equal to the

current number of samples from group k .
while ALLOC · COST < B do ▷ Enforce the budgetary constraint,

where · is the dot product

for k ← 1 to K do
PRIORITY[k] ← ESTIMATE_MARGINAL(ALLOC,k)

end for
GROUP← argmaxi PRIORITY[i]

ALLOC[GROUP] = ALLOC[GROUP] + STEP_SIZE
COST[i]

end while

between these two extremes, where batches of data are collected at

a time and the model builder can update their sampling strategy

between batches. In the sequential or batch-sequential settings, one

can estimate the learning curves at each step using the existing

training data, in addition to potentially using prior knowledge from

training similar models. Based on this information, one can then

judiciously select the next group to sample from.

Here we present a greedy allocation algorithm, which only re-

quires local estimates of the marginal increase in model perfor-

mance, rather than estimates of the full learning curve. In practice,

these local estimates can be obtained by observing how model

performance previously changed as more data were added, an ap-

proach we demonstrate in Section 5 in the context of constructing

polygenic risk scores. We start by defining a step size s , which can

be viewed as the number of dollars we spend at each step of the

algorithm. Then, given a current allocation ®n, the next datapoint
is selected from the group that is expected to increase utility the

most. That is, the next group i∗ is selected to satisfy:

i∗ ∈ argmax

1≤i≤K
Û

(
®n +

s

ci
1i

)
= argmax

1≤i≤K

K∑
k=1

ak M̂k

(
®n +

s

ci
1i

)
, (9)

where Û and M̂ reflect the model-builder’s current estimates. Im-

portantly, to select i∗ one only needs accurate local knowledge of

the learning curves (i.e., the likely performance gain for an addi-

tional sample from that group). Algorithm 1 outlines the process of

applying this approach.

In Theorem 1, we show that if the true forms of the learning

curves are concave and the data from one group do not affect the

derivative of model performance in the other groups, then the

greedy strategy finds the optimal solution given only knowledge of

local marginal improvements. We note that this condition holds in

the special case when the model-builder trains separate models for

each group, as is often done in our motivating example of polygenic

risk estimation.

Theorem 1. Suppose the learning curves are concave increasing
and utility is linear. Further suppose that the partial derivatives of the
learning curves have no cross-group effects, meaning that if ®pj = ®qj
then

∂Mk (®p)

∂nj
=
∂Mk (®q)

∂nj
for 1 ≤ k ≤ K .

Then the greedy algorithm, initialized at the zero allocation ®n = 0

with a given step size s , maximizes U over all feasible allocations
where nk is a multiple of s

ck
for all k .
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Proof. First, we define the marginal improvement of utility of

the jth batch from the ith group,mi, j , to be:

K∑
k=1

ak [Mk (n1, ...,ni = j
s

ci
, ...,nK ) −Mk (n1, ...,ni = (j − 1)

s

ci
, ...,nK )]

=

K∑
k=1

akoi jk .

By the condition on the partial derivatives, the differenceMv (n1, ...,ni =
j sci , ...,nk ) −Mv (n1, ...,ni = (j − 1)

s
ci , ...,nk ) depends only on the

value of ni , and is independent from all other elements of ®n. Then,
we note that any allocation A can be written as {(i, j)}, where
(i, j) ∈ A implies that the allocation includes the jth batch from

group i . The model-builder’s utility for an allocation can be written

U (A) =
∑
i, j ∈A

mi, j .

Let d = B
s be the number of batches that the model-builder

will purchase. Then, an upper bound on the possible utility of the

allocation is the sum of the d highestmi, j . We will show that the

greedy algorithm at each step chooses a batch (i, j) corresponding
to the highest value ofmi, j out of all batches (i, j) not included in

the greedy allocation, implying that it achieves that upper bound.

Say that our greedy algorithm at step t chooses to sample batch

(it , jt ) and batch (i∗, j∗) has not been sampled. .

Case 1: it = i∗. Then, j∗ > jt , since the greedy algorithm has

already sampled (it , 1)...(it , jt ).

mit , jt =

k∑
v=1

avoit jtv >
k∑

v=1
avoit j∗v =mi∗, j∗

where the inequality is given by the concavity of the learning

curves and that j∗ > jt .
Case 2: it , i∗. Let j

′
be the number of batches the greedy

algorithm has sampled from group i∗. Then,

mit , jt >=mi∗, j′+1 >=mi∗, j∗ ,

where the first inequality comes from the fact that our algorithm is

greedy and the second comes from the concavity of the learning

curves. □

Theorem 1 shows that the greedy algorithm is provably optimal

when the learning curves do not have cross-group effects. However,

numerical experiments suggest that the greedy algorithm is optimal

in a wide-variety of settings beyond those satisfying the conditions

of the theorem. Consider, for instance, our running computer vision

example. The learning curves defined by Eq. (8) violate the assump-

tions of Theorem 1, as the marginal learning rates in each group

depend on the number of samples currently collected in all other

groups. Nonetheless, we find that the greedy algorithm achieves the

optimal utility for both the equal utility and the prioritized utility

functions, as shown in Table 1.

To further investigate the behavior of the greedy algorithm, we

conducted an extensive set of numerical experiments. We specifi-

cally considered random problem instances in which the number

of groups K varied from 2 to 10, costs ®c were randomized such

that ck ∼ UNIF(0, 1), weights of the utility function ®a were ran-

domized such that ak ∼ UNIF(0, 1), and the learning curves were

randomized so that:

Mk (®n) = f
©­«
K∑
j=1

γk, j · ®nj
ª®¬ , γk, j ∼ UNIF(0, 1), (10)

for two functional forms, f (x) = log(x) and f (x) =
√
x . Under

all circumstances, we find that the mean absolute difference be-

tween the solutions found via convex optimization and the greedy

algorithm approaches 0 as the step size goes to 0. These numerical

findings suggest that the greedy algorithm is a robust approach

to finding optimal allocations under a wide range of conditions;

analytically characterizing the algorithm’s properties would be an

interesting direction for future work.

5 AN APPLICATION TO POLYGENIC RISK
SCORES

5.1 Background
We now transition from our simple, stylized deforestation example

to amore detailed application involving polygenic risk scores (PRSs).

Polygenic risk scores are statistical models which use the presence

of genomic variants in one’s DNA sequence in order to estimate

risk for developing a complex disease. PRSs have been found to

be predictive for many complex genetic diseases such as coronary

artery disease and Type 2 diabetes [39], and are believed to be

promising tools for risk stratification for health interventions more

broadly.

However, PRSs have been found to exhibit disparities in perfor-

mance across groups defined by ancestry [24]. Specifically, many

PRSs have been found to perform worse in people of African de-

scent. The main cause of this performance gap is thought to be a

lack of ancestral representation in genome-wide association studies

(GWAS), from which the datasets to train polygenic risk scores

typically come. To date, about 52% of all GWAS were conducted in

populations of European descent compared to 10% in populations

of African descent, and 78% of individuals who appear in GWAS

are of European ancestry compared to 2% of African ancestry [61].

Furthermore, 72% of individuals in GWAS were recruited from only

three countries: the United States, the United Kingdom, and Iceland

[49]. Additional work has shown this lack of diversity in GWAS

could result in over- or under-estimation of genetic disease risk in

understudied populations and could potentially exacerbate health

disparities [26, 61].

Despite calls for additional representation for non-European an-

cestries in GWAS and PRSs [45, 56, 61], it is still unclear exactly

how a model-builder interested in constructing a PRS should allo-

cate their limited funding between gathering genomic data from

people of different ancestries. To demonstrate how our framework

might be applied in this setting, we use a simulation framework

developed by domain experts [17, 38] to first generate a synthetic

population of people with different ancestries, and then train PRS

models under various sampling strategies.
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5.2 Simulation details
Following Cavazos andWitte [17], we simulated genomes of 200,000

people of European (CEU) and African (YRI) descent, along with

the presence of a phenotype (disease) with 5% prevalence in both

populations. We used the simulated data to train separate PRSs

in each population, evaluating model performance over a variety

of training allocations (see Appendix B for further details). Out

of the 10,000 people who will get the disease (called “cases”) and

190,000 people who will never get the disease (called “controls”),

we chose a random sample of 5,000 cases and 5,000 controls to be

the obtainable training data. Trained models were evaluated on a

holdout test set comprised of the remaining 5,000 cases and 95,000

other randomly selected controls.

For our hypothetical disease, we imagine there is a health inter-

vention that has cost c and benefit b. That is, for an individual i , the
intervention has value

V = bdi − c, (11)

where di is an indicator variable for whether the person will even-

tually get the disease. If p̂ denotes one’s estimated likelihood of

developing the disease, based on the available genomic data, the

expected value of intervening is:

E[V | p̂] = bp̂ − c . (12)

Suppose the cost and benefit of the intervention are given by

c = 5 and b = 100, constants which we use for the remainder

of our analysis.
2
Then the expected value of the intervention is

positive for individuals for whom p̂ > 0.05, negative for p̂ < 0.05,

and zero for p̂ = 0.05. Given the base prevalence of the disease is

5%, the expected utility of intervening on a random person is 0.

However, if the model-builder is able to identify and selectively

treat individuals at high risk for the disease, the intervention can

yield positive value.

Given a predictive model
ˆfT ®n trained on the genomic dataset T®n ,

the value-maximizing intervention strategy is to treat those with

estimated risk greater than 0.05. We define the group-level model

performance of a training allocation to be the expected value from

applying this decision rule on a random member of the group:

Mk (®n) = ET ®nEX 0,Y 0 [G(Y 0, ˆfT ®n (X
0)) | X 0

д = k], (13)

where

G(X0,Y0) = 1 ˆfT ®n (X
0)>0.05

· (Y 0b − c), (14)

and the pair (X 0,Y 0) represents the genomic markers and eventual

disease status of a random individual belonging to group k .

5.3 Constructing equitable datasets
We consider a scenario in which the model-builder has budget

B = 5000, and where samples from each group cost 1 unit, where

a sample is a single case-control pair. The model-builder begins

initially with 500 samples from each group, and must then choose

how to allocate their budget in increments of s = 100. We evaluate a

variety of policies for allocating the budget between sampling from

CEU (European descent) and YRI (African descent) data. We specifi-

cally consider two static policies: (1) representative sampling, where

2
Wenote that the cost here could either bemonetary or health-related, such as radiation

exposure from X-rays.

Algorithm 2 Implementation of ESTIMATE_MARGINAL for PRS ap-

plication

ESTIMATE_MARGINAL(ALLOC, k) :

X ← SEQ(MAX(START[k], ALLOC[k] − (m − 1) ·

STEP_SIZE), ALLOC[k], STEP_SIZE)
Y ← [MODEL_PERF(x) for x in X]
ˆβ, ŜEβ ← LINEAR_REGRESSION(Y, X)

Z ← N+( ˆβ ,
ˆSE2β )

RETURN(Z · STEP_SIZECOST[k ] )

the proportion of training data from both groups mirrors their pro-

portion in the overall population;
3
and (2) equal sampling, where

nYRI = nCEU. To adhere to the step-size s , we restrict these static
policies to the closest allocations with nCEU and nYRI being multi-

ples of s . We also consider two active sampling strategies, which

allocate the budget sequentially: (1) sampling from the group which

currently has lower model performance, in an effort to achieve per-

formance parity [1]; and (2) our greedy adaptive sampling algorithm

discussed in Section 4.

To apply our adaptive sampling method (Algorithm 1), the model

builder needs to estimate the marginal improvement in utility

U
(
®n + s

ck
1k

)
− U (®n) for each group k given their current allo-

cation ®n. We outline our implementation of this estimation problem

in Algorithm 2. Our method for estimating the marginal improve-

ment is to keep track of our model performance at each allocation,

and then construct a local approximation of the learning curve via

linear regression, using the last m = 5 measurements of model

performance (or all the available points, if fewer than five mod-

els have been trained for a given group). The choice ofm can be

thought of as a bias-variance trade-off, where higherm leads to

bias because the true slope is decreasing but lowm leads to vari-

ance because the individual observations of model performance

are noisy. Then, for each group k ∈ {YRI,CEU} we get both an

estimate
ˆβk of the increase in performance per training sample,

and a standard error ˆSEβk of that estimate. To account for noise in

our estimate, we select the next group to sample based on a draw

˜βk ∼ N+
(
ˆβk , ˆSE

2

βk

)
, where N+ is the truncated normal distribu-

tion, bounded from 0 to ∞. This procedure can be thought of as

analogous to Thompson sampling, with a prior that more data can-

not decrease model performance. We apply this stochastic method

due to challenges in estimating model performance. In a setting

where model training was computationally inexpensive, one might

alternatively address this problem by bootstrapping the collected

data and training and evaluating several models at each training

size; in our setting, though, that approach was not feasible, as PRSs

are computationally intensive to train.

3
We assume the intervention is being done in the United States, and use the proportion

of Black and non-Hispanic white individuals in the 2020 census [13].
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Figure 1: The learning curves of our polygenic risk score
model, where each point represents the average per-capita
utility for members of a group if the training set contains x
number of people in that group. The PRS both starts with a
better performance and improves faster for the YRI group.
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Figure 2: The performance Pareto frontier of our setting,
where each point corresponds to an allocation of our budget
B = 5, 000 such that NCEU + NYRI = B, NCEU ≥ 500,NYRI ≥ 500.
Going left to right, as we increase the proportion of our allo-
cation towards gathering samples from the CEU group, the
model performanceMYRI decreases andMCEU increases. We
evaluate strategies for constructing equitable datasets, find-
ing that the greedy adaptive sampling algorithm is able to
find near-optimal policies under a wide range of utility spec-
ifications.

5.4 Results
Following the above setup, Figure 1 shows the learning curves

of the two group-level performances MYRI and MCEU as a func-

tion of the size of the dataset used to train each group’s mod-

els, NYRI and NCEU, across 50 simulations. In our hypothetical

scenario, we find, for a fixed number of training samples, that

the polygenic risk score for individuals of African ancestry both

starts off with a higher performance at the minimum 500 sam-

ples (MYRI = 1.69,MCEU = 0.158), and has improved roughly by

twice as much at the maximum possible 5,000 samples (MYRI =

2.31,MCEU = 0.447,∆YRI = 0.62,∆CEU = 0.289). We note that this

phenomenon is a consequence of the way we selected the parame-

ters of our simulation; it is intended only as an illustrative example,

and is not representative of broader trends (see Appendix B for

details).

In our setting, the model builder can choose any training al-

location ®n = (NCEU,NYRI) such that NCEU + NYRI ≤ 5000 (with

NCEU ≥ 500 and NYRI ≥ 500, given the initial dataset). The black

line in Figure 2 shows the tradeoff betweenMCEU andMYRI over

all possible choices of ®n such that NCEU + NYRI = 5000. Along

this frontier, we plot both the model performances resulting from

an equal sampling policy (®n = (2500, 2500)), along with that of a

representative sampling policy (®n = (3300, 700)), which has more

samples fromMCEU because we set our hypothetical intervention

in the United States. We find that the resulting policies differ drasti-

cally in where along the frontier they fall. In particular, relative to

the equal-sampling strategy, the representative-sampling strategy

(which samples more individuals of European descent) implicitly

sacrifices substantial gains in model performance for individuals of

African descent for more modest performance gains for individuals

of European descent.

In addition to these two commonly employed static strategies, we

plot the results of a third, dynamic strategy, which attempts to equal-

ize model performance by sampling from the worst-performing

group at each step. In our simulation, this strategy always sam-

ples from the CEU group, since it has lower performance at all

allocations ®n. This strategy—labeled “performance parity” in Fig-

ure 2—results in trading off a large amount ofMYRI for a very small

amount ofMCEU. Indeed, because the marginal increase ofMCEU

per training sample becomes essentially zero, the point does not

even appear on the frontier in Figure 2.

Where these three sampling strategies—equal, representative,

and performance parity—lie on the frontier will, in general, vary

depending on the structure of the learning curves. For instance,

in a scenario where CEU performance increased faster than YRI

performance, representative sampling would result in trading off a

relatively lower amount of YRI performance for a higher amount

of CEU performance relative to our setting. In particular, as the

two static sampling strategies consider only the composition of the

training dataset and not its impact on model performance, they will

be unstable in their valuations for group-level model performances

in different circumstances.

Depending on the training allocation, one can land anywhere on

the black frontier in Figure 2. But where exactly one might choose

to land depends on application-specific considerations. We now

imagine a model-builder with utility that is linear in the group-level
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model performances:

U (MCEU,MYRI) = aCEUMCEU + aYRIMYRI,

where the weights ®a = (aCEU,aYRI) are non-negative and determine

where on the frontier the optimal policy falls. For various settings

of the weights, we run our greedy sampling algorithm, initialized

at the allocation ®n = (500, 500). The red line in Figure 2 shows the

resulting model performances while we vary
1

1000
≤

aCEU
aYRI ≤ 1000.

We find that our approach is able to identify near-optimal policies

over a wide range of specifications for utility, with a small amount

of loss due to noise in our estimation of the marginal improvement

(Algorithm 2).

Finally, we consider the question of how a model-builder might

decide to set ®a in their specification of utility. If we take the point of

view that the benefit b and cost c of the intervention are in units of

lives saved, setting ®a = (pCEU,pYRI) to be proportional to the size of
the group in the overall population optimizes the total number of

lives saved. The resulting policy given by these weights is labeled

“Greedy (Urepresentative)” in Figure 2. We note that this sampling

strategy is distinct from representative sampling, which sets the

composition of the training dataset to be proportional to the size

of the group, instead of the valuations on model performance. In

particular, when optimizing for Urepresentative, the greedy strategy

recognizes that although the YRI group is smaller, it has higher

marginal gains in performance, and thus samples more heavily

from that group than does the representative-sampling strategy. In

this case, the greedy strategy optimizing forUrepresentative has both

higher group-level performance for the YRI group as well as higher

overall performance than representative sampling.

Another natural choice might be to set ®a = (1, 1), so that model

performance is valued equally among the two groups. This strat-

egy, labeled “Greedy (U
equal
)” in Figure 2, results in drawing more

samples from the YRI group compared to the greedy strategy with

representative weights, since the size of the groups is ignored and

the YRI group, which has a higher marginal improvement per train-

ing sample, is prioritized. We note that this notion of equal value

for group-level model performance is different than both model

parity (the closest strategy to parity results in sampling only from

CEU), and equal sampling, which enforces equality in the training

set composition instead of the model performance valuations.

Finally, a model-builder might take the point of view that PRSs

have traditionally excluded those of African descent [24], and

put model performance for that group at a premium by setting

®a = (1, 1.50). The resulting model performances from running

the greedy algorithm with these preferences is labeled “Greedy

(Upriority)”, and is very close to the resulting performances for the

last specification ®a = (1, 1), reflecting that moving further toward

the upper left of the plot requires a large trade-off in MCEU to

achieve a small gain of MYRI. This pattern is a function of this

particular learning curve, and, in a different setting, the priority

might result in a much different allocation than the greedy sampling

strategy with equal weights.

6 DISCUSSION
Statistical models across awide variety of domains have been shown

to exhibit disparities in model performance, in part due to lack of

representation in the datasets they are trained on. To mitigate this

problem, we present a framework for a model-builder to specify

a preference over resulting group-level model performances, and

then formalize the task of constructing a dataset as a constrained

optimization problem. We present an adaptive sampling algorithm

for constructing datasets which takes into account both the struc-

ture of how data from one group affects model performance in the

others in addition to the cost of acquiring data. We showed both em-

pirically and analytically that taking these two factors into account

allows our adaptive algorithm to identify near-optimal solutions,

and can avoid some of the unintended consequences that can arise

with static sampling methods such as equal or representative sam-

pling. Finally, we demonstrated how our framework allows for the

model-builder to efficiently intervene when circumstances dictate

that model performance should be prioritized for a given group: for

example, due to traditional models underserving a group, or model

performance better translating to impact in that group.

Our findings can inform practitioners as well as policymakers

seeking clarity on what would constitute sufficiently representative

and inclusive datasets. In particular, our findings demonstrating

drawbacks of static samplingmethods suggest that future guidelines

or requirements around dataset representativity [2] should take care

not to codify sampling approaches that are insufficiently flexible

in considering all the factors surrounding the construction of a

dataset, including the effects of sampling strategies on actual model

performance.

We conclude by noting some important limitations of our analy-

sis. First, although our greedy algorithm appears to work well for

one natural family of learning curvesMk , it may not be an effective

approach in every instance. There are many types of data and many

methods of training models using such data, which can result in a

variety of different structures for the learning curves. For instance,

a deep learning approach to training PRSs might use all available

data for a single model instead of training separate models such as

in our example [5]. A promising direction for future work is to con-

sider how our framework might be applied to a variety of different

approaches to building models in different domains. Second, our

greedy algorithm requires the model-builder to estimate the mar-

ginal improvements inMk at each step, which can be statistically

and computationally challenging, especially when there are limited

data for certain groups or when training models requires significant

computing resources. Third, in this work we considered a particular

specification of utility, but others may be appropriate depending

on the setting. For instance, if data are collected with the purpose

of being used in the future in addition to training a model, the

utility function might also encode the value of the data for training

future models. Fourth, we considered a regime where the model-

builder samples data randomly from a group at fixed cost: in reality,

the model-builder may be able to choose individual data points to

sample based on their features and variable costs, necessitating an

approach incorporating active learning [4, 47, 48, 60]. Finally, this

method may not be applicable in circumstances where a training

dataset cannot be responsibly expanded, such as data regarding

individuals’ interaction with police or the criminal legal system,

or where privacy interests are determined to outweigh model per-

formance or fairness goals; in such cases, approaches leveraging

synthetic data or experimenting with alternative modelling options

may be more appropriate to address fairness concerns.
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We see our work as part of a broadening of howmachine learning

practitioners operationalize algorithmic fairness. In addition to

approaches tailored to improving the equity of models trained

on static datasets, it is important to consider issues that arise at

various stages of the training and deployment of statistical models,

including constructing equitable training sets [28, 28, 32, 32, 46, 46,

55, 55], interventions to bolster model performance for traditionally

underserved groups, such as screening [6, 14, 53], and designing

more equitable interventions given a set of risk scores [18]. We

hope our work will help support these ongoing efforts.
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A GENETICS GLOSSARY
Causal Variant In the context of Genome-Wide Association

Studies (GWAS), causal variants are genetic variants that have a

biological effect on polygenic diseases (e.g. coronary heart disease,

cancer, diabetes), which are diseases caused by the combined effects

of multiple genes.

Genome An individual organism’s complete set of genetic in-

structions; DNA.

Genome-WideAssociation Studies (GWAS) Studies performed

for use in genetics research to identify genetic variants present at a

higher frequency in individuals with a specific trait (e.g., a disease)

in a population.

Genotype A subset of genes in an individual organism, which

can contribute to a phenotype.

Minor Allele Frequency (MAF) The proportion of time the

allele that appears less frequently in a given population occurs.

Phenotype Observable traits such as height, eye color, and pres-

ence of a disease in an individual.

B PRS DETAILED MATERIALS AND
METHODS

Following Cavazos andWitte [17], we simulate European (CEU) and

African (YRI) ancestry genotypes for chromosome 20, simulating

genomes of 200,000 people of European descent and 200,000 people

of African descent. We then computed the minor allele frequency

(MAF) for each population throughout the simulated genotypes

and ranked the genotypes by the difference MAFYRI − MAFCEU.
We chose the top ranked 1,000 variants as our casual variants to

simulate a disease where a PRS might have more predictive power

in one group, in this case those of African descent.

For each selected causal variant i , we continue following Cava-

zos et al. [17], drawing an effect size βi ∼ N (0, h2

1000
), where h = 1

2

controls the trait heritability. We then compute the total genetic

liability for individual j as X j ∼
∑
1000

i=1 βiдi , where дi is an indi-

cator variable for if the genetic variant appears at location i in
person j’s DNA sequence. Then, we compute the non-genetic ef-

fect as ϵj ∼ N (0, 1 − h2). After both X and ϵ are standardized

(G =
X−µX
σX ∗

√
h2,E =

ϵ−µϵ
σϵ ∗

√
1 − h2) they are added to obtain

the total trait liability (G+E). Each individual is then ranked by their

total trait liability and the top 5% of individuals in the CEU and YRI

populations are given the phenotype (disease), Y = 1, with the rest

having Y = 0.

To train the polygenic risk scores in the CEU and YRI popula-

tions, a GWAS is conducted to select genetic variants for inclusion.

Genetic variants were selected via a standard two-step process of

p-value thresholding and clumping. For each genotype with a MAF

> 1%, we compute an odds ratio and assess statistical significance

with a chi-squared test, with all genotypes with p < .01 being se-
lected. We further filtered the genotypes via clumping to remove

highly correlated adjacent genotypes, removing genotypes within

a 1 MB window that have a Pearson correlation of r = .2. For
each individual, their empirical PRS was given by

∑V
i=1 log(ORi )дi ,

where V is the number of remaining variants after the clumping

+ thresholding process, ORi is the odds ratio for the ith selected

variant, and дi is an indicator variable for whether the variant is
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present in that person. Lastly, we use Platt scaling to convert each

PRS for an individual to a probability of disease risk.
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